Emerson
Green Sprouts 5e96023b35f64

Evaluate Refrigeration System Lifecycle Performance Before You 'Go Green'

April 14, 2020
Because commercial refrigeration systems can potentially be in service for decades, end users must carefully consider today’s regulatory requirements and tomorrow’s potential constraints.

As global and national refrigeration industry dynamics continue to rapidly evolve, more business owners and supermarket operators are seeking new refrigerant and equipment alternatives. Ever-changing refrigerant and energy regulations, combined with an increased awareness of the environmental impacts of legacy refrigeration systems, are prompting more stakeholders to explore the green and growing edges of the refrigeration landscape.

But because commercial refrigeration systems can potentially be in service for decades, end users must carefully consider not only today’s regulatory requirements, but also tomorrow’s potential constraints. This means making the most informed equipment decisions possible with the goal of maximizing the investment throughout the system’s lifecycle. Doing so requires a fundamental understanding of the environmental impacts and financial considerations of a commercial refrigeration system.

Total equivalent warming impacts
While today’s regulations are primarily focused on reducing the global warming potential (GWP) from direct emissions of hydrofluorocarbon (HFC) refrigerants, it’s also important to remember that the total equivalent warming impact (TEWI) also accounts for indirect emissions — or the amount of greenhouse gases generated from the refrigeration system’s energy consumption. It’s estimated that these indirect emissions represent the majority of total climate impacts.

Only by evaluating both energy consumption and refrigerant GWP — including leaks and disposal — over the lifetime of a system can we estimate a system’s full lifecycle climate performance (LCCP).

Environmental and financial sustainability
Operators who are considering going green must also factor in the financial viability and sustainability of new or upgraded refrigeration systems. This means determining not only first costs and installation expenses, but also estimating the long-term maintenance and service requirements.

For manufacturers of these new eco-friendly equipment, components and systems, their task is twofold: 1) utilize lower-GWP refrigerants to meet regulatory requirements, while 2) minimizing ownership and operating costs.

Building a greener future
Like much of the commercial refrigeration industry, Emerson believes that the adoption of environmentally responsible, financially viable refrigeration systems will become more commonplace over the next decade. After all, there is a historic precedent for refrigerant phase-downs, including the ban on ozone-depleting substances which began in the 1990s and is now coming to fruition. Under the authority of the Montreal Protocol and the Environmental Protection Agency’s Clean Air Act, ozone-depleting substances like R-22 are no longer being manufactured or imported into the U.S. as of Jan. 1, 2020.

Today, the global reduction of fluorinated gases (aka F-gases) is being driven by the Kigali Amendment to the Montreal Protocol, which has now been ratified by more than 80 countries. As federal regulations continue to take shape and regional mandates become more prevalent throughout the U.S., it seems inevitable that the industry will eventually make the transition to more eco-friendly refrigeration systems.

Emerson has helped support this transition for many years by working with early adopters of low-GWP refrigerants and supporting technologies. Those operators who are taking proactive steps now will have a head start on this transition and be able to provide insights from which the rest of the industry can learn.

André Patenaude is Director, Food Retail Marketing & Growth Strategy, Cold Chain for Emerson.
About the Author

André Patenaude

André Patenaude is Director, Food Retail Marketing & Growth Strategy, Cold Chain for Emerson Commercial & Residential Solutions.